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We present an experimental procedure to perform broadband microrheological measurements with optical
tweezers. A generalized Langevin equation is adopted to relate the time-dependent trajectory of a particle in an
imposed flow to the frequency-dependent moduli of the complex fluid. This procedure allows us to measure the
material linear viscoelastic properties across the widest frequency range achievable with optical tweezers.
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I. INTRODUCTION

In 1986 Ashkin and colleagues reported the first observa-
tion of what is now commonly referred to as optical twee-
zers: a tightly focused beam of light capable of holding mi-
croscopic particles stable in three dimensions �1�. Since then,
several studies have adopted this technique as a tool for pur-
poses as varied as trapping solid aerosols �2�, measuring the
viscosity of biomaterials �3,4�, the forces exerted by single
motor proteins �5� and the compliance of bacterial tails �6�,
or stretching single DNA molecules �7�. However, there re-
main a number of issues when optical tweezers are used for
microrheological measurements.

Microrheology is a branch of rheology having the same
principles as conventional bulk rheology �i.e., to study the
linear viscoelastic behavior of materials�, but working on
micron length scales. The linear viscoelastic properties of a
material can be represented by the frequency-dependent dy-
namic complex modulus G����, which provides information
on both the viscous and the elastic nature of the material. The
conventional method of measuring G���� is based on the
imposition of an oscillatory stress ��� , t� and the measure-
ment of the resulting oscillatory strain ��� , t�, or vice versa.
The amplitudes of its in-phase and out-of-phase components
are both proportional to the stress amplitude, with constants
of proportionality defining, respectively, the storage �elastic�
G���� and the loss �viscous� G���� moduli �8�.

Optical tweezers have been successfully used with New-
tonian fluids for rheological purposes such as determining
the fluid viscosity with a high accuracy, measuring the hy-
drodynamic interactions between particles, or estimating the
wall effect on the Stokes drag coefficient �i.e., Faxén’s cor-
rection�, as reviewed in Ref. �9�. Conversely, when optical
tweezers are adopted for measuring the viscoelastic proper-
ties of complex fluids the results are either limited to the
material high-frequency response �10–12�, discarding the es-
sential information related to long time scale �i.e., low-
frequency� material behavior, or supported by low-frequency
measurements performed by different techniques �e.g., rota-
tional rheometry �13� or passive video particle tracking

�PVPT� microrheology �14��, but either without showing a
clear overlapping region between the results �13� or even
leaving a macroscopic gap of information in the range of
frequencies explored �14�.

The aim of this work is to present a self-consistent proce-
dure for measuring the linear viscoelastic properties of ma-
terials, from nonoscillatory measurements, across the widest
frequency range achievable with optical tweezers. In particu-
lar, the procedure consists of two steps: �I� measuring the
thermal fluctuations of a trapped bead for a sufficiently long
time and �II� measuring the transient bead displacement,
from the optical trap center, in response to a uniform fluid
flow field entraining the bead. The flow is instantaneously
switched on at time zero by translating the whole fluid
sample while the trap is held fixed. The imposed constant-
velocity motion continues until a steady displacement of the
bead is reached. The analysis of step �I� provides �a� the trap
stiffness ���—note that this has the added advantage of mak-
ing the present method self-calibrated—and �b� the high-
frequency viscoelastic properties of the material to a high
accuracy. Step �II� has the potential to provide information
about the viscoelastic properties of the material down to very
low frequencies, limited only by the duration of the experi-
ment. However, because of the harmonic nature of the opti-
cal trap, which tends not to transmit high-frequency applied
forces to the bead, the material’s high-frequency response
cannot be determined by this step. The full material vis-
coelastic spectrum is thus resolved by combining the results
obtained from steps �I� and �II�.

II. ANALYTICAL MODEL

The experimental procedure is analytically described
through the analysis of the motion of a bead trapped in a
stationary harmonic potential of force constant �, where a
uniform fluid flow field of magnitude �V� s� can be exerted at
time t=0. The equation describing the bead position r��t�∀ t
can be derived by means of the generalized Langevin equa-
tion, which in three dimensions is

ma��t� = f�R�t� − �
0

t

��t − ���v���� − V� s����d� − �r��t� , �1�

where m is the mass of the particle, a��t� is its acceleration,
v��t� is the bead velocity, V� s�t� is the fluid flow field velocity,*m.tassieri@elec.gla.ac.uk
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and f�R�t� is the usual Gaussian white noise term, modeling
stochastic thermal forces acting on the particle. The integral
term represents the viscous damping of the fluid, which in-
corporates a generalized time-dependent memory function
��t�.

We now show how Eq. �1� evolves in the two cases men-
tioned above: when V� s�t�=0� and V� s�t��0� , respectively. In
the first case, where V� s�t�=0� , the optical tweezers can be
calibrated by using the principle of equipartition of energy,

3
2kBT = 1

2��r2� , �2�

where kB is the Boltzmann constant, T is the absolute tem-
perature, and �r2� is the time-independent variance of the
particle displacement from the trap center, the origin of r�.
Despite all the possible methods for determining the optical
trap stiffness �e.g., using the power spectrum or the drag
force �15–17��, the equipartition method is the only method
independent of the viscoelastic properties of the material un-
der investigation and is thus essential from a rheological
point of view.

The thermal fluctuations of the trapped bead can also be
investigated to determine the high-frequency viscoelastic
properties of the material through the analysis of the time
dependence of the mean-square displacement �MSD�
��r2����,

��r2���� 	 ��r��t + �� − r��t��2�t, �3�

where t is the absolute time and � is the lag time. The aver-
age is taken over all initial times t and the number of par-
ticles considered in the experiment, if more than 1. In par-
ticular, using the assumptions adopted by Mason and Weitz
in the study of the motion of thermally excited free particles
�18�, at thermal equilibrium, where �v��t�f�R�t��=0 and
m�v��t�v��t��=6kBT∀ t, Eq. �1� yields, in the Laplace form, the
velocity autocorrelation function

�v�0�ṽ�s�� =
6kBT

ms + �̃�s� + �/s
	 s2��r̃2�s�� , �4�

where s is the Laplace frequency. Following Mason and
Weitz �18� in assuming that the bulk Laplace-frequency-
dependent viscosity of the fluid 	̃�s� is proportional to the

microscopic memory function �̃�s�=6
a	̃�s�, where a is the
bead radius, Eq. �4� can be written as

	̃�s� =
1

6
a

 6kBT

s2��r̃2�s��
− ms −

�

s
� , �5�

where the first term in the brackets reflects the viscoelasticity
of the medium, the second term is related to the inertia of the
bead, and the third term takes into account the optical trap
strength. It is easy to demonstrate that, for a microbead of
density on order of 1 g /cm3 suspended in water, the product
ms is negligible compared with the first term for the majority
of the experimentally accessible frequencies �i.e., s
�106 s−1�. With regard to the optical trap strength, two lim-
iting cases can be distinguished: �i� in the limit � /s→0,
which can be obtained either for vanishing trap strength or
for measurements performed at high frequencies, but lower

than 106 s−1, Eq. �5� recovers the generalized Stokes-
Einstein relationship derived by Mason and Weitz �18�; and
�ii� in the limit � /s→�, which can be obtained either for a
strong optical trap or for measurements performed at very
low frequencies, Eq. �5� gives the same result as if the bead
were embedded in a purely elastic continuum with elastic
constant of � /6
a. For all intermediate cases, where 0
� /s�, it is easy to show that, by analytical continuation
from Eq. �5�, the complex modulus can be expressed directly
in terms of the time-dependent MSD,

G���� =�s	̃�s��s=i� =
�

6
a
 2�r2�

i���r2̂����
− 1� , �6�

where ��r2̂���� is the Fourier transform of ��r2����.
The second step of the procedure, which experimentally

follows the first, consists of the analysis of the induced bead
displacement from the trap center due to an imposed time-
dependent uniform fluid flow field V� s�t� entraining the bead.
In this case, Eq. �1� yields, in the Laplace form, the mean
velocity of the particle,

�ṽ�s�� =
�̃�s�Ṽs�s�

ms + �̃�s� + �/s
	 s�r̃�s�� , �7�

where the brackets �¯ � denote the average over several in-
dependent measurements �but not averaged over absolute
time since time-translation invariance has been broken by the
flow startup at t=0�. It is straightforward to show that, by
analytical continuation from Eq. �7�, the complex modulus
can be expressed directly in terms of both the imposed flow
field and the induced bead displacement from the trap center,

G���� =�s	̃�s��s=i� =
�� − m�2�i��r̂����

6
a�V̂s��� − i��r̂�����
, �8�

where V̂s��� and �r̂���� are the Fourier transforms of V� s�t�
and �r��t��, respectively. Note that, so far, the temporal form
of V� s�t� is still undefined. Thus, Eq. �8� represents the general
solution for G���� independently of the temporal form of
V� s�t� �e.g., sinusoidal function V� s sin��t� or, as in this work,
Heaviside step function V� sH�t�, where V� s�t�=0� ∀ t0 and
V� s�t�=V� s∀ t�0�.

In principle, Eqs. �6� and �8� are two simple expressions
relating the material complex modulus G���� to the observed
time-dependent bead trajectory r��t� via the Fourier transform
of either r��t� itself �in Eq. �8�� or the related MSD �in Eq.
�6��. In practice, the evaluation of these Fourier transforms,
given only a finite set of data points over a finite time do-
main, is nontrivial since interpolation and extrapolation from
those data can yield serious artifacts if handled carelessly.

In order to express the two Fourier transforms in Eqs. �6�
and �8� in terms of the N experimental data points
�tk , ��r2����k� and �tk , �r��t��k�, respectively, where k
=1, . . . ,N, which extend over a finite range, exist only for
positive t, and need not to be equally spaced, we adopt the
analytical method introduced in Ref. �19�. In particular, we
refer to Eq. �10� of Ref. �19�, which is equally applicable to
find the Fourier transform ĝ��� of any time-dependent quan-
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tity g�t� sampled at a finite set of data points �tk ,gk�, giving

− �2ĝ��� = i�g�0� + �1 − e−i�t1�
�g1 − g�0��

t1
+ ġ�e−i�tN

+ �
k=2

N gk − gk−1

tk − tk−1
��e−i�tk−1 − e−i�tk� , �9�

where ġ� is the gradient of g�t� extrapolated to infinite time.
Also g�0� is the value of g�t� extrapolated to t=0+. Identical

formulas can be written for both ��r2̂���� and �r̂����, with g
being replaced with ��r2� and �r��, respectively. This analyti-
cal procedure has the advantage of removing the need for
Laplace and inverse-Laplace transformations of experimental
data �20�.

III. EXPERIMENTAL DETAILS

We have tested Eqs. �6� and �8�, via Eq. �9�, by measuring
both the viscosity of water and the viscoelastic properties of
water-based solutions of polyacrylamide �PAM, flexible
polyelectrolytes, Mw=5�106–6�106 g /mol, Polysciences,
Inc.� using optical tweezers as described below. Trapping is
achieved using a cw Ti:sapphire laser system �M Squared,
SolsTiS� which provides up to 1 W at 830 nm. The tweezers
are based around an inverted microscope, where the same
objective lens �100�, 1.3 numerical aperture, Zeiss, Plan-
Neofluor� is used both to focus the trapping beam and to
image the resulting motion of the particles. Samples are
mounted in a motorized microscope stage �ASI, MS-2000�.
Two complementary metal-oxide semiconductor cameras are
used to view the sample, with bright-field illumination: one
provides a wide field of view �Prosilica EC1280M�, while
the other takes high-speed images of a reduced field of view
�Prosilica GV640M�. These images are processed in real
time at 2 kHz using our own LABVIEW �National Instru-
ments� particle tracking software running on a standard desk-
top PC �21�.

IV. RESULTS

The Brownian fluctuations of an optically trapped bead
give rise to the time-dependent ��r2���� shown in Fig. 1. In
the case of a bead immersed in a Newtonian fluid, it is ex-
pected that at short time intervals �thus small distances� the
bead behaves as if it were free to diffuse. Indeed, the agree-
ment between the observed ��r2���� at short times of a
trapped bead in water �circles� and the Einstein prediction for
a freely diffusing bead �solid line� is good. As the time in-
tervals increase the bead becomes influenced by the optical
potential. This results in a plateau at large time intervals,
where ��r2���� tends to 2�r2�. It is interesting to note that the
ratio of these two quantities �the MSD and twice the variance
of the positional distribution� is a dimensionless parameter,
independent of both the optical trap stiffness and the bead
radius. It thus allows an explicit comparison between the
dynamics of the fluids under investigation as shown in Fig.
2. Moreover, the onset point of the plateau region in Fig. 2
indicates the bottom limit of the frequency range within

which the moduli can be determined by Eq. �6�, as for all the
previous works using stationary optical tweezers.

In Fig. 3 we compare the responses of a 5-�m-diameter
bead immersed in water �a Newtonian fluid� and in a water
solution of PAM at 1% w/w �a non-Newtonian fluid� due to
the imposition of a uniform fluid flow field having temporal
behavior as a Heaviside step function V� s�t�=V� sH�t�, with dif-
ferent magnitudes in the two measurements. Experimentally,
the execution of a Heaviside step function is achieved by
suddenly moving the motorized microscope stage at a prede-
termined speed and direction �here, parallel to the x axis�.
The experiment runs until a steady displacement ��x� of the
bead from the trap center is reached �i.e., until all the mate-
rial’s characteristic relaxation times are exceeded�. In Fig. 3
the x component of the bead displacement has been normal-
ized by �x for a better comparison between the viscoelastic
characters of the two samples. It is clear that while the New-
tonian fluid reaches a steady value of the displacement al-
most instantaneously �as expected�, the non-Newtonian fluid
shows complex dynamics representative of its viscoelastic
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FIG. 1. �Color online� The MSD vs lag time of a 5-�m-diameter
bead in water �with �=0.8 �N /m� and in two water-based solu-
tions of PAM at concentrations of 0.5% and 1% w/w �both with
�=1.7 �N /m�. The line is the Einstein prediction of the MSD for
a 5-�m-diameter bead in water at 25 °C.
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FIG. 2. �Color online� The normalized MSD vs lag time of a
5-�m-diameter bead in water �with �=0.8 �N /m� and in two
water-based solutions of PAM at concentrations of 0.5% and 1%
w/w �both with �=1.7 �N /m�.
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nature. It is important at this point to note that, because of
the harmonic nature of the optical potential, at early times
�i.e., for t→0 or equivalently for �→��, the trapping force
exerted on the bead is actually small �i.e., �r��t�→0� and the
particle moves almost at the same speed as the imposed flow
�i.e., v��t��V� s�t��; this implies that Eq. �8� becomes unde-
fined at high frequencies.

The broadband microrheological measurement with opti-
cal tweezers is achieved by combining the frequency re-
sponses obtained from both the methods introduced above.
In particular, the material’s high-frequency response is deter-
mined by applying Eq. �6� �via Eq. �9� with ��r2�k replacing
gk� to the ��r2���� measurements, whereas the low-frequency
response is resolved by applying Eq. �8� �via Eq. �9� with
�r��k replacing gk� to the data describing the bead’s transient
response to the motion of the stage.

A typical result of this procedure for a non-Newtonian
fluid is shown in Fig. 4 while, in the case of water, a constant
viscosity of 	=8.69�10−4�6�10−6 Pa s is measured over
five frequency decades at 25 °C. It is evident that, although
there is some noise in the frequency domain that has propa-
gated from genuine experimental noise in the time-domain
data, there is a clear overlapping region of agreement be-
tween the two methods that makes the whole procedure self-
consistent. Moreover, it confirms the ease with which the
low-frequency material response can be explored, right down
to the terminal region �where G���2 and G����, which is
the current limitation for microrheological measurements
performed not only with stationary optical tweezers �as
shown here by the high-frequency response in Fig. 4, limited
to frequencies above 100 s−1�, but also with PVPT and dif-
fusing wave spectroscopy �22�. In particular, in PVPT mi-
crorheological measurements, the lowest accessible fre-
quency is inversely proportional to both the fluid viscosity
and the bead size; it is given by the inverse of the longest
time for which the probe particle stays in focus �i.e., within
the objective depth of field� during the experiment. For ex-
ample, in water at 25 °C a micron-sized bead, observed
through a 100� objective with a depth of field of order 200
nm, would remain in focus for a time of order 0.1 s. The
experimental method presented here, on the other hand, has
no fundamental restriction on the lowest achievable fre-
quency. Indeed, with a suitable choice of the velocity of the
applied fluid flow field �e.g., �V� s�=3 �m /s� and the sample
holder geometry �e.g., a 3-cm-long microfluidic channel�, an
experiment could be made to run for hours, thereby probing
frequencies of order 10−4 s−1 or lower, without limit. Finally,
in order to remove the genuine noise, a simple smoothing
operation of the original data is sufficient and the results are
shown in Fig. 5.

V. CONCLUSIONS

In summary, we have presented a self-consistent and
simple experimental procedure, coupled with an analytical
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FIG. 4. �Color online� Storage �squares� and loss �circles�
moduli vs frequency of a solution of 1% w/w of PAM in water
measured by means of both Eq. �6� �solid symbols at high frequen-
cies� and Eq. �8� �open symbols at low frequencies� applied directly
to the experimental data presented in Figs. 2 and 3, respectively.

10-2 10-1 100 101 102 103
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

G
',
G
''
[P
a]

ω [rad/s]

~ ω
~ ω2

FIG. 5. �Color online� Storage �squares� and loss �circles�
moduli vs frequency of a solution of 1% w/w of PAM in water
measured by means of both Eq. �6� �solid symbols at high frequen-
cies� and Eq. �8� �open symbols at low frequencies� applied directly
to the experimental data presented in Figs. 2 and 3, but smoothed.

FIG. 3. �Color online� The coordinates of a 5-�m-diameter bead
vs time for two different solutions and for two uniform fluid flow
fields of different magnitudes �V� s� at 25 °C. In both cases the data
were averaged over three measurements and the x coordinate has
been normalized by the steady-state displacement �x. In water �

=1.7 �N /m, �V� s�=20 �m /s, and �x=0.523 �m. In 1% w/w of
PAM �=8.6 �N /m, �V� s�=3 �m /s, and �x=1.155 �m. The inset
highlights the startup behavior of both the above systems.
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data analysis method, for determining the broadband vis-
coelastic properties of complex fluids with optical tweezers.
This method extends the range of the frequency response
achieved by conventional optical tweezers measurements
down to the material’s terminal region. In fact, the method
has no lower limit on the accessible frequency, thus allowing
microrheological measurements to be performed on complex
fluids with very long relaxation times, such as those exhibit-
ing soft glassy rheology �23�, or composed of very high mo-

lecular weight polymers. Thus, the accessible frequency
spectrum for small samples of complex fluids is now limited
only by the patience of the observer.
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